Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.167
Filtrar
1.
Pathol Res Pract ; 256: 155287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579576

RESUMO

The lack of expression of terminal deoxynucleotidyl transferase (TdT) is frequently associated with KMT2A-rearranged subtype of pediatric acute lymphoblastic leukemia (ALL). However, this association has not been investigated extensively in the Asian population. A retrospective analysis of TdT expression in pediatric B-cell ALL (B-ALL) was performed in patients treated using the Taiwan Pediatric Oncology Group (TPOG) ALL 2002 and 2013 protocols. Among the 331 patients with B-ALL, 12 patients showed TdT negativity at initial diagnosis. Among these, eight patients showed KMT2A rearrangement (66.7%). Other patients showing negative TdT expression had ETV6::RUNX1, MEF2D-rearranged, and other B-ALL subtypes. However, in the context of KMT2A-rearranged B-ALL (n = 20), only eight patients showed TdT negativity. The 5-year event-free survival and overall survival of patients with and without TdT expression were 83.8% versus 46.8% (P <0.001) and 86.3% versus 55.4% (P = 0.004), respectively. Moreover, several aberrant markers, such as CD2, CD56, CD7, and CD117, were rarely expressed in the B-ALL samples, and if expressed, they were enriched in specific genetic subtypes. The results of this study indicate that immunophenotypic features are correlated with specific genetic subtypes of childhood B-ALL.


Assuntos
DNA Nucleotidilexotransferase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , DNA Nucleotidilexotransferase/metabolismo , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico
3.
Hematol Oncol ; 42(3): e3265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564328

RESUMO

The next-generation sequencing technologies application discovers novel genetic alterations frequently in pediatric acute lymphoblastic leukemia (ALL). RAS signaling pathway mutations at the time of relapse ALL frequently appear as small subclones at the time of onset, which are considered as the drivers in ALL relapse. Whether subclones alterations in the RAS signaling pathway should be considered for risk group stratification of ALL treatment is not decided yet. In this work, we investigate the RAS signaling pathway mutation spectrum and the related prognosis in pediatric ALL. We employed an NGS panel comprising 220 genes. NGS results were collected from 202 pediatric ALL patients. 155 patients (76.7%) harbored at least one mutation. The incidences of RAS signaling pathway mutations are different significantly between T-ALL and B-ALL. In B-ALL, the RAS pathway is mostly involved, and NRAS (17.6%), KRAS (22.7%), and PTPN11 (7.7%) were the three most frequently mutated genes. Co-occurring mutations of CREBBP and NRAS, FLT3, or PTPN11 (p = 0.002, p = 0.009, and p = 0.003, respectively) were found in this cohort. The 3-year RFS rates for the RAS signaling pathway mutation-positive and negative cases was 76.5 % versus 89.7 % (p = 0.012). Four cases relapsed in the lately 3 years were RAS signaling pathway mutation-positive. RAS signaling pathway mutation is an important biomarker for poorer relapse-free survival in pediatric B-ALL patients despite good early MRD levels.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais , Prognóstico , Recidiva
4.
Cell Commun Signal ; 22(1): 211, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566191

RESUMO

The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transativadores , Animais , Humanos , Camundongos , Doxorrubicina , Proteína p300 Associada a E1A , Interleucina-3 , Subunidade alfa de Receptor de Interleucina-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transativadores/metabolismo
5.
Cancer Rep (Hoboken) ; 7(4): e2034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577721

RESUMO

BACKGROUND: Adhesion of cancer cells to extracellular matrix laminin through the integrin superfamily reportedly induces drug resistance. Heterodimers of integrin α6 (CD49f) with integrin ß1 (CD29) or ß4 (CD104) are major functional receptors for laminin. Higher CD49f expression is reportedly associated with a poorer response to induction therapy in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Moreover, a xenograft mouse model transplanted with primary BCP-ALL cells revealed that neutralized antibody against CD49f improved survival after chemotherapy. AIMS: Considering the poor outcomes in Philadelphia chromosome (Ph)-positive ALL treated with conventional chemotherapy without tyrosine kinase inhibitors, we sought to investigate an involvement of the laminin adhesion. METHODS AND RESULTS: Ph-positive ALL cell lines expressed the highest levels of CD49f among the BCP-ALL cell lines with representative translocations, while CD29 and CD104 were ubiquitously expressed in BCP-ALL cell lines. The association of Ph-positive ALL with high levels of CD49f gene expression was also confirmed in two databases of childhood ALL cohorts. Ph-positive ALL cell lines attached to laminin and their laminin-binding properties were disrupted by blocking antibodies against CD49f and CD29 but not CD104. The cell surface expression of CD49f, but not CD29 and CD104, was downregulated by imatinib treatment in Ph-positive ALL cell lines, but not in their T315I-acquired sublines. Consistently, the laminin-binding properties were disrupted by the imatinib pre-treatment in the Ph-positive ALL cell line, but not in its T315I-acquired subline. CONCLUSION: BCR::ABL1 plays an essential role in the laminin adhesion of Ph-positive ALL cells through upregulation of CD49f.


Assuntos
Integrina alfa6 , Laminina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Regulação para Cima , Animais , Humanos , Camundongos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Integrina alfa6/genética , Laminina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
6.
Hematology ; 29(1): 2335856, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38581291

RESUMO

Philadelphia chromosome-positive acute lymphoblastic leukemia (PH + ALL) is the most common cytogenetic abnormality of B-ALL in adults and is associated with poor prognosis. Previously, the only curative treatment option in PH + ALL was allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Since 2000, targeted therapy combined with chemotherapy, represented by the tyrosine kinase inhibitor Imatinib, has become the first-line treatment for PH + ALL. Currently, the remission rate and survival rate of Imatinib are superior to those of simple chemotherapy, and it can also improve the efficacy of transplantation. More recently, some innovative immune-targeted therapy greatly improved the prognosis of PH + ALL, such as Blinatumomab and Inotuzumab Ozogamicin. For patients with ABL1 mutations and those who have relapsed or are refractory to other treatments, targeted oral small molecule drugs, monoclonal antibodies, Bispecific T cell Engagers (BiTE), and chimeric antigen receptor (CAR) T cells immunotherapy are emerging as potential treatment options. These new therapeutic interventions are changing the treatment landscape for PH + ALL. In summary, this review discusses the current advancements in targeted therapeutic agents shift in the treatment strategy of PH + ALL towards using more tolerable chemotherapy-free induction and consolidation regimens confers better disease outcomes and might obviate the need for HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Mesilato de Imatinib/uso terapêutico , Cromossomo Filadélfia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inibidores de Proteínas Quinases/uso terapêutico
7.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612531

RESUMO

Infant acute lymphoblastic leukemia (Infant ALL) is a kind of pediatric ALL, diagnosed in children under 1 year of age and accounts for less than 5% of pediatric ALL. In the infant ALL group, two subtypes can be distinguished: KMT2A-rearranged ALL, known as a more difficult to cure form and KMT2A- non-rearranged ALL with better survival outcomes. As infants with ALL have lesser treatment outcomes compared to older children, it is pivotal to provide novel treatment approaches. Progress in the development of molecularly targeted therapies and immunotherapy presents exciting opportunities for potential improvement. This comprehensive review synthesizes the current literature on the epidemiology, clinical presentation, molecular genetics, and therapeutic approaches specific to ALL in the infant population.


Assuntos
Imunoterapia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Lactente , Humanos , Criança , Adolescente , Terapia de Alvo Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
9.
Cancer Med ; 13(8): e7172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651186

RESUMO

BACKGROUND: Quantitative measurement of minimal residual disease (MRD) is the "gold standard" for estimating the response to therapy in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Nevertheless, the speed of the MRD response differs for different cytogenetic subgroups. Here we present results of MRD measurement in children with BCP-ALL, in terms of genetic subgroups with relation to clinically defined risk groups. METHODS: A total of 485 children with non-high-risk BCP-ALL with available cytogenetic data and MRD studied at the end-of-induction (EOI) by multicolor flow cytometry (MFC) were included. All patients were treated with standard-risk (SR) of intermediate-risk (ImR) regimens of "ALL-MB 2008" reduced-intensity protocol. RESULTS AND DISCUSSION: Among all study group patients, 203 were found to have low-risk cytogenetics (ETV6::RUNX1 or high hyperdiploidy), while remaining 282 children were classified in intermediate cytogenetic risk group. For the patients with favorable and intermediate risk cytogenetics, the most significant thresholds for MFC-MRD values were different: 0.03% and 0.04% respectively. Nevertheless, the most meaningful thresholds were different for clinically defined SR and ImR groups. For the SR group, irrespective to presence/absence of favorable genetic lesions, MFC-MRD threshold of 0.1% was the most clinically valuable, although for ImR group the most informative thresholds were different in patients from low-(0.03%) and intermediate (0.01%) cytogenetic risk groups. CONCLUSION: Our data show that combining clinical risk factors with MFC-MRD measurement is the most useful tool for risk group stratification of children with BCP-ALL in the reduced-intensity protocols. However, this algorithm can be supplemented with cytogenetic data for part of the ImR group.


Assuntos
Citometria de Fluxo , Neoplasia Residual , Humanos , Neoplasia Residual/genética , Criança , Citometria de Fluxo/métodos , Masculino , Feminino , Pré-Escolar , Adolescente , Lactente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Análise Citogenética/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Subunidade alfa 2 de Fator de Ligação ao Core/genética
10.
Anticancer Res ; 44(4): 1389-1397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537997

RESUMO

BACKGROUND/AIM: In precursor B-cell lineage acute lymphoblastic leukemia (BCP-ALL), leukemic cells harbor genetic abnormalities that play an important role in the diagnosis, prognosis, and treatment. A subgroup of BCP-ALL is characterized by the presence of a Philadelphia (Ph) chromosome and a chimeric BCR::ABL1 gene, whereas in another subgroup, leukemic cells exhibit near-haploidy with chromosome number 24-30. This study presents the third documented case of BCP-ALL in which a near haploid clone concurrently displayed a Ph chromosome/BCR::ABL1. CASE REPORT: Bone marrow cells obtained at diagnosis from a 25-year-old man with BCP-ALL were genetically investigated using G-banding, fluorescence in situ hybridization, and array comparative genomic hybridization. Leukemic cells had an abnormal karyotype 28,X,-Y,+6,+10,+18,+21,+ der(22) t(9;22)(q34;q11)[13]/28,idem, del(10)(q24),der(12) t(1;12) (q21;p13)[2]/46,XY[3], retained heterozygosity of the disomic chromosomes 6, 10, 18, and 21, had breakpoints in introns 1 of ABL1 and BCR, and carried a BCR::ABL1 chimera encoding the 190 kDa BCR::ABL1 protein. CONCLUSION: The coexistence of the BCR::ABL1 chimera and near-haploidy in the same cytogenetic clone suggested a possible synergistic role in leukemogenesis, with the former activating signaling pathways and the latter disrupting gene dosage balance.


Assuntos
Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Humanos , Adulto , Haploidia , Hibridização in Situ Fluorescente , Hibridização Genômica Comparativa , Aberrações Cromossômicas , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Cariótipo , Proteínas de Fusão bcr-abl/genética , Translocação Genética
11.
Clin Epigenetics ; 16(1): 48, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528641

RESUMO

BACKGROUND: miR-182 promoter hypermethylation frequently occurs in various tumors, including acute myeloid leukemia, and leads to low expression of miR-182. However, whether adult acute lymphocyte leukemia (ALL) cells have high miR-182 promoter methylation has not been determined. METHODS: To assess the methylation status of the miR-182 promoter, methylation and unmethylation-specific PCR analysis, bisulfite-sequencing analysis, and MethylTarget™ assays were performed to measure the frequency of methylation at the miR-182 promoter. Bone marrow cells were isolated from miR-182 knockout (182KO) and 182 wild type (182WT) mice to construct BCR-ABL (P190) and Notch-induced murine B-ALL and T-ALL models, respectively. Primary ALL samples were performed to investigate synergistic effects of the hypomethylation agents (HMAs) and the BCL2 inhibitor venetoclax (Ven) in vitro. RESULTS: miR-182 (miR-182-5P) expression was substantially lower in ALL blasts than in normal controls (NCs) because of DNA hypermethylation at the miR-182 promoter in ALL blasts but not in normal controls (NCs). Knockout of miR-182 (182KO) markedly accelerated ALL development, facilitated the infiltration, and shortened the OS in a BCR-ABL (P190)-induced murine B-ALL model. Furthermore, the 182KO ALL cell population was enriched with more leukemia-initiating cells (CD43+B220+ cells, LICs) and presented higher leukemogenic activity than the 182WT ALL population. Furthermore, depletion of miR-182 reduced the OS in a Notch-induced murine T-ALL model, suggesting that miR-182 knockout accelerates ALL development. Mechanistically, overexpression of miR-182 inhibited proliferation and induced apoptosis by directly targeting PBX3 and BCL2, two well-known oncogenes, that are key targets of miR-182. Most importantly, DAC in combination with Ven had synergistic effects on ALL cells with miR-182 promoter hypermethylation, but not on ALL cells with miR-182 promoter hypomethylation. CONCLUSIONS: Collectively, we identified miR-182 as a tumor suppressor gene in ALL cells and low expression of miR-182 because of hypermethylation facilitates the malignant phenotype of ALL cells. DAC + Ven cotreatment might has been applied in the clinical try for ALL patients with miR-182 promoter hypermethylation. Furthermore, the methylation frequency at the miR-182 promoter should be a potential biomarker for DAC + Ven treatment in ALL patients.


Assuntos
Antineoplásicos , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Metilação de DNA/genética , Linfócitos/metabolismo , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
12.
Clin Epigenetics ; 16(1): 49, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549146

RESUMO

Acute lymphoblastic leukemia (ALL) is the most prevalent cancer in children, and despite considerable progress in treatment outcomes, relapses still pose significant risks of mortality and long-term complications. To address this challenge, we employed a supervised machine learning technique, specifically random survival forests, to predict the risk of relapse and mortality using array-based DNA methylation data from a cohort of 763 pediatric ALL patients treated in Nordic countries. The relapse risk predictor (RRP) was constructed based on 16 CpG sites, demonstrating c-indexes of 0.667 and 0.677 in the training and test sets, respectively. The mortality risk predictor (MRP), comprising 53 CpG sites, exhibited c-indexes of 0.751 and 0.754 in the training and test sets, respectively. To validate the prognostic value of the predictors, we further analyzed two independent cohorts of Canadian (n = 42) and Nordic (n = 384) ALL patients. The external validation confirmed our findings, with the RRP achieving a c-index of 0.667 in the Canadian cohort, and the RRP and MRP achieving c-indexes of 0.529 and 0.621, respectively, in an independent Nordic cohort. The precision of the RRP and MRP models improved when incorporating traditional risk group data, underscoring the potential for synergistic integration of clinical prognostic factors. The MRP model also enabled the definition of a risk group with high rates of relapse and mortality. Our results demonstrate the potential of DNA methylation as a prognostic factor and a tool to refine risk stratification in pediatric ALL. This may lead to personalized treatment strategies based on epigenetic profiling.


Assuntos
Metilação de DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Canadá , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Resultado do Tratamento , Prognóstico , Recidiva
13.
Pediatr Blood Cancer ; 71(6): e30964, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514796
14.
Cell Genom ; 4(4): 100526, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537633

RESUMO

Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.


Assuntos
Predisposição Genética para Doença , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Hispânico ou Latino/genética , Fator de Transcrição Ikaros/genética
15.
Br J Haematol ; 204(4): 1344-1353, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479427

RESUMO

This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Deleção de Genes , Fator de Transcrição Ikaros/genética , Recidiva Local de Neoplasia , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Medição de Risco , Fatores de Transcrição , Lactente , Pré-Escolar , Adolescente
16.
Xenobiotica ; 54(2): 95-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381003

RESUMO

Polymorphisms in genes coding folate-metabolising enzymes might alter the pharmacokinetics and sensitivity for methotrexate "MTX".The aim of the study aimed to investigate the influence of MTHFR C677T, DHFR19 Ins/del, GGH -401 C > T, and MTR A2756G polymorphisms on MTX toxicity and pharmacokinetics in Egyptian patients with Acute lymphoblastic leukaemia (ALL) or Non-Hodgkin lymphoma (NHL).Fifty adult Egyptian patients with ALL and NHL, treated with high dose MTX, were prospectively enrolled in the study. Clinical and biochemical data was collected objectively from medical records after each cycle of MTX. Plasma concentrations of MTX were measured after 72 h of initiation of infusion. Genotyping was done with a PCR-ARMS and PCR-RFLP assays.The MTHFR C677T T variants significantly increased the risk of leukopoenia, whereas the genotype MTHFR 677 C > T TT significantly associated with lymphocytopenia, thrombocytopenia, and anaemia. The genotype GGH-401 TT was significantly correlated with anaemia. Plasma MTX level was significantly higher in patients with MTR A2756G G variants.MTHFR polymorphism played the main role in MTX toxicities. The pharmacokinetics of MTX was affected by MTR polymorphism. GGH mutation was mainly concerned with anaemia. Pharmacogenetic testing are recommended to optimise MTX therapy.


Assuntos
Anemia , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Metotrexato/efeitos adversos , Egito , Polimorfismo de Nucleotídeo Único , Linfoma/tratamento farmacológico , Genótipo , Anemia/tratamento farmacológico , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
18.
Int J Hematol ; 119(4): 465-471, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424413

RESUMO

While our understanding of the molecular basis of mixed phenotype acute leukemia (MPAL) has progressed over the decades, our knowledge is limited and the prognosis remains poor. Investigating cases of familial leukemia can provide insights into the role of genetic and environmental factors in leukemogenesis. Although familial cases and associated mutations have been identified in some leukemias, familial occurrence of MPAL has never been reported. Here, we report the first cases of MPAL in a family. A 68-year-old woman was diagnosed with MPAL and received haploidentical stem cell transplantation from her 44-year-old son. In four years, the son himself developed MPAL. Both cases exhibited similar characteristics such as biphenotypic leukemia with B/myeloid cell antigens, Philadelphia translocation (BCR-ABL1 mutation), and response to acute lymphoblastic leukemia-type chemotherapy. These similarities suggest the presence of hereditary factors contributing to the development of MPAL. Targeted sequencing identified shared germline variants in these cases; however, in silico analyses did not strongly support their pathogenicity. Intriguingly, when the son developed MPAL, the mother did not develop donor-derived leukemia and remained in remission. Our cases provide valuable insights to guide future research on familial MPAL.


Assuntos
Leucemia Aguda Bifenotípica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Feminino , Idoso , Adulto , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Doença Aguda , Fenótipo , Células Germinativas , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/terapia , Leucemia Aguda Bifenotípica/diagnóstico
19.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339034

RESUMO

Acute lymphoblastic leukemia (ALL) represents around 25% of adult acute leukemias. Despite the increasing improvement in the survival rate of ALL patients during the last decade, the heterogeneous clinical and molecular features of this malignancy still represent a major challenge for treatment and achieving better outcomes. To identify aberrantly expressed genes in bone marrow (BM) samples from adults with ALL, transcriptomic analysis was performed using Affymetrix Human Transcriptome Array 2.0 (HTA 2.0). Differentially expressed genes (DEGs) (±2-fold change, p-value < 0.05, and FDR < 0.05) were detected using the Transcriptome Analysis Console. Gene Ontology (GO), Database for Annotation, Visualization, and Integrated Discovery (DAVID), and Ingenuity Pathway Analysis (IPA) were employed to identify gene function and define the enriched pathways of DEGs. The protein-protein interactions (PPIs) of DEGs were constructed. A total of 871 genes were differentially expressed, and DNTT, MYB, EBF1, SOX4, and ERG were the top five up-regulated genes. Meanwhile, the top five down-regulated genes were PTGS2, PPBP, ADGRE3, LUCAT1, and VCAN. An association between ERG, CDK6, and SOX4 expression levels and the probability of relapse and death was observed. Regulation of the immune system, immune response, cellular response to stimulus, as well as apoptosis signaling, inflammation mediated by chemokines and cytokines, and T cell activation were among the most altered biological processes and pathways, respectively. Transcriptome analysis of ALL in adults reveals a group of genes consistently associated with hematological malignancies and underscores their relevance in the development of ALL in adults.


Assuntos
Perfilação da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Transcriptoma , Biomarcadores , Recidiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Biologia Computacional , Fatores de Transcrição SOXC
20.
Cell Cycle ; 23(1): 36-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38350028

RESUMO

Copy number variation (CNV) of certain genes in pediatric Acute Lymphoblastic Leukemia (ALL) impacts gene expression levels. Here, we aimed to investigate the potential prognostic utility of CNVs in pediatric B-ALL and T-ALL. Using genomics files representing cases from the TARGET-ALL-P2 dataset, genes commonly involved in ALL development were analyzed for CNVs. Case IDs representing increased copy numbers for SOX11, PDGFRB, and MDK represented a worse overall survival probability specifically for B-ALL (logrank p=0.021, p=0.0052, p=0.019, respectively). These data support the continued investigation of using CNVs for clinical prognostic biomarkers for pediatric B-ALL.


Assuntos
Amplificação de Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Variações do Número de Cópias de DNA/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genômica , Fatores de Transcrição SOXC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...